Investigating Gender Differences of Brain Areas in Emotion Recognition Using LSTM Neural Network
نویسندگان
چکیده
In this paper, we investigate key brain areas of men and women using electroencephalography (EEG) data on recognising three emotions, namely happy, sad and neutral. Considering that emotion changes over time, Long Short-Term Memory (LSTM) neural network is adopted with its capacity of capturing time dependency. Our experimental results indicate that the neural patterns of different emotions have specific key brain areas for males and females, with females showing right lateralization and males being more left lateralized. Accordingly, two non-overlapping brain regions are selected for two genders. The classification accuracy for females (79.14%) using the right lateralized region is significantly higher than that for males (67.61%), and the left lateralized area educes a significantly higher classification accuracy for males (82.54%) than females (73.51%), especially for happy and sad emotions.
منابع مشابه
Speech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملIdentifying Gender Differences in Multimodal Emotion Recognition Using Bimodal Deep AutoEncoder
This paper mainly focuses on investigating the differences between males and females in emotion recognition using electroencephalography (EEG) and eye movement data. Four basic emotions are considered, namely happy, sad, fearful and neutral. The Bimodal Deep AutoEncoder (BDAE) and the fuzzy-integral-based method are applied to fuse EEG and eye movement data. Our experimental results indicate th...
متن کاملAdvanced LSTM: A Study about Better Time Dependency Modeling in Emotion Recognition
Long short-term memory (LSTM) is normally used in recurrent neural network (RNN) as basic recurrent unit. However, conventional LSTM assumes that the state at current time step depends on previous time step. This assumption constraints the time dependency modeling capability. In this study, we propose a new variation of LSTM, advanced LSTM (A-LSTM), for better temporal context modeling. We empl...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملThe Optimization of Forecasting ATMs Cash Demand of Iran Banking Network Using LSTM Deep Recursive Neural Network
One of the problems of the banking system is cash demand forecasting for ATMs (Automated Teller Machine). The correct prediction can lead to the profitability of the banking system for the following reasons and it will satisfy the customers of this banking system. Accuracy in this prediction are the main goal of this research. If an ATM faces a shortage of cash, it will face the decline of bank...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017